Spring Term plan

Year 13 Further Mathematics A Level

Mr Bullock	Mr Ahluwalia
Differential equations	Further Vectors
Find and use an integrating factor to solve first	Understand and use the vector and Cartesian forms of
differential equations of the form $\frac{dy}{dx} + P(x) y = Q(x)$	the equation of a plane.
Find both general and particular solutions of	Calculate the scalar product and use it to calculate the
differential equations.	angle between two lines, to express the equation of a
Use differential equations in modelling in kinematics	plane, and to calculate the angle between two planes
and in other contexts.	and the angle between a line and a plane.
Solve differential equations of the form y " + ay' + by	Calculate and understand the properties of the vector
= 0 using the auxiliary equation.	product. Understand and use the equation of a
Solve differential equations of the form y " + ay' + by	straight line in the form $(r - a) \times b = 0$. Use vector
= f (x) by solving the homogeneous case and adding a	products to find the area of a triangle.
particular integral to the complementary function.	Find the intersection of two lines. Find the intersection
Solve the equation for simple harmonic motion x ["] =	of a line and a plane. Calculate the perpendicular
-wx and relate the solution to the motion	distance between two lines, from a point to a line and
Model damped oscillations using 2nd order	from a point to a plane.
differential equations and interpret their solutions.	
Understand light, critical and heavy damping and be	
able to determine when each will occur.	
Analyse and interpret models of situations with one	
independent variable and two dependent variables	
as a pair of coupled 1st order simultaneous	
equations and be able to solve them, for example	
predator-prey models.	
Use of Hooke's Law with T = kx to formulate a	
differential equation for simple harmonic motion, where k is a constant.	
Use models for damped motion where the damping	
force is proportional to the velocity.	
Half Term	
Numerical methods	Centre of mass and moments
Use the mid-ordinate rule and Simpson's rule for	Conditions for sliding and toppling including
integration	
integration.	suspension and on an inclined plane.
Integration. Understand how to use Euler's step by step method	
-	suspension and on an inclined plane.
Understand how to use Euler's step by step method	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations.	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations.	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I error from tests based on a normal distribution.	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I error from tests based on a normal distribution. Understand the power of a test. Calculations of	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I error from tests based on a normal distribution. Understand the power of a test. Calculations of P(Type II error) and power for a test for tests based	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I error from tests based on a normal distribution. Understand the power of a test. Calculations of P(Type II error) and power for a test for tests based on a normal, Binomial or a Poisson distribution.	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I error from tests based on a normal distribution. Understand the power of a test. Calculations of P(Type II error) and power for a test for tests based on a normal, Binomial or a Poisson distribution. Test for the mean of a normal distribution with	suspension and on an inclined plane. Determine the forces acting on a rigid body in
Understand how to use Euler's step by step method for solving first order differential equations. Use improved Euler method for solving first order differential equations. Hypothesis testing and the t-test Understand Type I and Type II errors and define in context. Calculate the probability of making a Type I error from tests based on a Poisson or Binomial distribution. Calculate probability of making Type I error from tests based on a normal distribution. Understand the power of a test. Calculations of P(Type II error) and power for a test for tests based on a normal, Binomial or a Poisson distribution.	suspension and on an inclined plane. Determine the forces acting on a rigid body in