Spring Term plan

Year 13 Mathematics A Level

Week	Mrs Laidler/Mr Bullock	Mrs Loveridge/Mr Ahluwalia
25/1	Statics	Statistics
	Understanding that there is a maximum value that Friction	Feedback and review of statistics test
	can take when an object is on the point of moving. Finding	(There will be a week working on the Large Data Set once back in school)
	unknown forces when a system is at rest.	
1/2	Dynamics	Numerical Methods
	Finding unknown forces when a system has constant	Locate roots of $f(x) = 0$ by considering changes of sign of $f(x)$ in an
	acceleration, including the use of the SUVAT equations.	interval of x on which f(x) is sufficiently well-behaved
	Solving differential equations arising from F=ma	Understand how change of sign methods can fail
8/2	Moments	Numerical Methods
	Looking at taking moments about points and resolving to	Solve equations approximately using simple iterative methods; be able to
	find unknown forces	draw associated cobweb and staircase diagrams.
		Solve equations using the Newton-Raphson method and other
		recurrence relations of the form
		$x_{n+1} = g(x_n)$.
		Understand how such methods can fail
15/2	Half Term	
22/2	Forces review	Numerical Methods
_		Understand and use numerical integration of functions, including the use
		of the trapezium rule and estimating the approximate area under a curve
		and limits that it must lie between.
		Use numerical methods to solve problems in context
1/3	Mechanics revision	Assessment of numerical methods
8/3	Mechanics test	Proof
		Proof by contradiction (including proof of the irrationality of root 2 and
		the infinity of primes, and application to unfamiliar proofs)
15/3	Feedback and review	Core Revision begins
22/3	End of content – Review and preparation for assessment begins. This will include past papers to help bring all the topics together and	
	help with increasing fluency of the work covered over the last two years	