Year Grou	b: 11 Subject: Triple Science	Term: Spring 2020		
Topic Biology: Exchange and transport	 Key Learning points End Point: To understand how exchange surfaces in mammals enable efficient exchange of substances. To understand the process of respiration and how we can measure respiration rates. Understand the general features of exchange surfaces to include the idea of increased surface area, a short diffusion pathway and maintenance of a concentration gradient increasing the rate of diffusion. Know how to calculate an object's surface area:volume ratio. Understand that smaller organisms with a large SA:V can obtain reactants for chemical processes via simple diffusion whereas the larger an organism gets the smaller the SA:V is meaning they require specialised exchange surfaces. Know the function and constituent parts of the circulatory system. Know the aerobic and anaerobic respiration equation. Be able to prepare and carry out an experiment to measure the rate of respiration of different organisms. Ethical considerations for working with live organisms must be considered. 		Assessment Students will be formatively assessed during each topic by past paper question end of topic tests completed in lesson time. • Students will complete a variety of consolidation homework throughout the	
Chemistry: Fuels and Earth's atmosphere	 understand the composition of our current atmosphere and how in Know that crude oil and natural gas are hydrocarbons for Know how the process of fractional distillation allows us to from crude oil. Understand the link between hydrocarbon chain length, v Know that hydrocarbons can be broken down into more u Know the equations for complete and incomplete combust combustion are often undesirable. Know the different forms or pollution given off by combust acid rain. Know the composition of the Earth's atmosphere when it 	 from crude oil. Understand the link between hydrocarbon chain length, volatility and applications in the real world. Know that hydrocarbons can be broken down into more useful substances using a process called cracking. Know the equations for complete and incomplete combustion including how products of incomplete combustion are often undesirable. Know the different forms or pollution given off by combustion to include the effect of greenhouse gases and 		
Physics: Particle model, forces and matter	 End Point: To understand how the particle model explains the pro- is transferred to or from a substance. Know that substances can be represented at the atomic I Understand what is meant by the term density in terms of the mass and volume of an object. Know that changes of state require energy and that this n constant whilst changing state. Know that there is a linear relationship between force and exceeds the elastic limit of the spring. Know how to calculate the spring constant of a spring giv spring. To be able to calculate the work done by a spring Understand the link between the density of a fluid and ho particles. 	level with the use of particle diagrams. f particles and be able to calculate density given means the temperature of a substance will remain d extension of a spring until the force applied ren the force applied and the extension of the using the spring constant.	students will have a summative assessment. This will be a 60-mark exam paper (20 marks from each discipline), which will be marked by their teacher.	