| Year Group: 12 | | Subject: Physics | Term: Spring 2021 | | |---|--|------------------|---|------------| | Topic | | Key Learn | ing points | Assessment | | Topic 4:
materials | End Point: To understand the determine the Young modulus from a graph of stress against strain of various materials. Carry out a detailed analysis of uncertainties and to compare their measured values with those from a data book. understand Hooke's law and be able to make calculations using it calculate the elastic strain energy stored in a deformed material sample estimate the elastic strain energy stored from a force—extension graph for a sample calculate tensile/compressive stress calculate tensile/compressive strain calculate the Young modulus. interpret stress—strain graphs understand and apply the terms limit of proportionality, elastic limit, yield point, breaking stress, elastic deformation and plastic deformation in relation to stress—strain graphs. Core Practical 5: Determine the Young modulus of a material. This might have been carried as part of the previous section. | | Students will be formatively assessed during each topic by past paper questions completed in lesson time. • Students will complete homework assignments as ongoing assessment of understanding. • Teachers will provide students with targeted feedback, based on their test performance. | | | Topic 5:
waves and
particle
nature of
light | End Point: To understand the mechanisms of waves and be able to explain how our understanding of polarisation occurs using various filters Understand what is meant by refraction Use Snell's law equation Understand how to measure the refractive index of a solid Understand that waves can be reflected and transmitted at a media interface Understand what is meant by critical angle, and how it can be calculated Be able to predict if TIR can occur at an interface Understand that lenses focus light rays, and explain how converging and diverging lenses affect light rays Explain the terms focal length and power of a lens Use the equation for power of single lens, and lens combination Trace the 3 principle rays through a converging and a diverging lens Understand the terms real and virtual when relating to images. Use the lens formula to calculate image magnifications Understand what is meant by plane/linear polarisation Describe how polarisation can be used to investigate stresses in a material Describe how light can pass through three polarising filters even if two are at right angles | | At the end of the term students will have a summative assessment. This will be a 60-mark exam paper which will be marked by their teacher. | |