Year Group: 13 Subject: Chemistry Term: Autumn 2021			
Торіс	Key Learning points	Assessment	
Acid-base equilibria	 End Point: To understand why we cannot simply identify acids and bases simply for what they do/don't conable to carry out structured calculations for pH for acids and bases, acknowledging the assumption necess. Be able to define acids and bases using Bronsted-Lowry theory Be able to describe acid-base reactions Be able to describe weak acids and strong acids in terms of dissociation Be able to define the term pH Deduce the expression for the dissociation of a weak acid, Ka Be able to define the terms pKa and pKw Understand the pH values based on components for acids, bases and salt solutions and for dilution solutions Be able to interpret pH curves and use them to select suitable indicators for a titration Understand what a buffer solution is and how it works to stabilise pH Be able to calculate the pH of a strong acid, weak acid, strong base and buffer, stating any approp assumptions Be able to calculate the concentrations of solutions needed to make a buffer of a certain pH Understand how the pH of blood is maintained Understand why there is a difference in the standard enthalpy of neutralisation for strong and weak 	 Students will be formatively assessed during each topic by past paper questions completed in lesson time. Students will complete homework assignments as ongoing assessment of understanding. Teachers will provide students with targeted feedback 	
Further energetics	 Enderstand why utere is a difference in the standard entitlation of strong and weak End Point: To understand how the feasibility of reactions can be predicted and what factors affect the mag. of the values involved for calculations of enthalpy, entropy and therefore Gibbs energy. Be able to define the terms; lattice energy, enthalpy of atomisation, electron affinity, enthalpy of so of hydration Understand what lattice energy provides a measure of Be able to construct Born-Haber cycles and use them to solve enthalpy calculations Understand what factors effect lattice energy Understand that comparing experimental and theoretical lattice energy indicates the degree of cov. Understand the meaning of polarisation when applied to ions Understand the factors that affect the polarising power of a cation and polarisability of an anion Understand that enthalpy changes alone do not control whether a reaction occurs Be able to calculate the entropy of a system, the entropy of the surroundings and the total entropy Understand what determines the feasibility of a reaction Be able to calculate Gibbs energy and use it to predict whether a reaction is feasible at a given terr explain why some salts are soluble, explain why HF is a weak acid and the trend in strength of chloracids Understand why some thermodynamically feasible reactions are inhibited by kinetic factors 	<i>polution, enthalpy</i> <i>valent character</i>	

Further organic chemistry (carbonyl compounds, carboxylic acids, amines, amides, amino acids and proteins)	 End Point: To understand how to identify organic molecules from their functional groups and describe some physical properties and reactions of these compounds. Be able to identify functional groups for aldehydes and ketones Understand the how the intermolecular forces formed with aldehydes and ketones affects their physical properties and solubility Understand the reactions of carbonyl compounds; with Fehling's solution, Benedict's solution, Tollens' reagent, acidified dichromate ions, lithium tetrahydridoaluminate in dry ether and iodine in the presence of alkali Be able to draw the mechanisms for the reactions of carbonyl compounds with; hydrogen cyanide in the presence of potassium cyanide and 2,4-dinitrophenylhydrazine Identify functional groups for; carboxylic acids, acyl chlorides, esters, amines and amides Understand how hydrogen bonds affect the boiling point and solubility of carboxylic acids Understand the reactions of carboxylic acids with; lithium tetrahydridoaluminate in dry ether, bases, phosphorus (V) chloride and alcohols in the presence of an acid catalyst Understand the reactions of acyl chlorides with; water, alcohols, concentrated ammonia and amines Understand how polyesters are formed by condensation reactions Understand how polyesters are formed by condensation reactions Understand how aprepare an amine from a halogenoalkane and by the reduction of nitriles Understand the reactions of amines with water and acids Understand the reactions of amines with water and acids Understand the reactions of amines with water and acids Understand how aprepare an amine from a halogenoalkane and by the reduction of nitriles Understand how aprepare an amine from a halogenoalkane and public and copper (II) ions Understand the reactions of amines with water and acids Understand the reactions of amines with water and acids Understan	
	•	
	 Understand the effect of 2-amino acids on plane-polarised monochromatic light 	
	Understand how peptide bonds form in proteins and how it can be hydrolysed	