Spring Term plan

Year 12 Mathematics A Level

Mrs Laidler/Mr Storey-Scott	Mr Bullock/Mr Ahluwalia
CORE	STATISTICS
Integration	Probability
• Know and use the Fundamental Theorem of Calculus	• Use the vocabulary of probability theory, including
• understand that differentiation is the 'reverse' of	the terms random experiment, sample space,
integration and vice versa	independent events and mutually exclusive events
• Integrate x^n (excluding $n = -1$), and related sums,	• Solve problems involving mutually exclusive and
differences and constant multiples	independent events using the addition and
• include a constant of integration when finding an	multiplication rules
indefinite integral	• Use a probability function or a given context to
• Evaluate definite integrals and use a definite integral	find the probability distribution and probabilities
to find the area under a curve	for particular events
	Recognise and solve problems relating to
Mechanics	experiments which can be modelled by the
Vectors	Binomial distribution
Identify vector and scale	Hypothesis Testing
Use vectors in two dimensions with both column	Understand and apply the language of statistical
vectors and i, j notation,	hypothesis testing, developed through a binomial
Calculate the magnitude and direction of a vector	model
and convert between component form and	Conduct a statistical hypothesis test for the
magnitude/direction form	proportion in the binomial distribution and
Solve problems involving displacements velocities	interpret the results in context.
and forces	Understand that a sample is being used to make
prove that two vectors are parallel and understand	an inference about the population and appreciate
collinearity	that the significance level is the probability of
 Use the position vectors to find displacements and distances 	incorrectly rejecting the null hypothesis
• Use vectors to solve problems in pure mathematics	Statistics review and assessment
and in context	CORE
	Curve Sketching
Kinematics	 Analyse a function and sketch its graph
Understand and use fundamental quantities and	• understand, use and sketch straight-line graphs
units in the SI system: length, time, mass.	(including vertical and horizontal)
Understand and use derived quantities and units:	 understand and use polynomials up to cubic
velocity, acceleration, force, weight	(including sketching curves)
Calculate average speed and average velocity	 understand and use cubic polynomials with at
Draw and interpret graphs of displacement and	least one linear factor.
velocity against time	distinguish between the various possibilities for
Derive and use the formulae for motion	graphs of cubic polynomials indicating where
Use calculus in kinematics for motion in a straight	graphs meet coordinate axes
line with variable acceleration	understand and use graphs of the functions
	$y = a/x$ and $y = a/x^2$, as well as simple
Forces	transformations of these graphs (including
Resolve forces in two perpendicular directions	sketching curves).
Calculate the magnitude and direction of a resultant	Understand the effect of simple transformations
force	on the graph of $y = f(x)$ including sketching
Resolve for connected particles with constant	associated graphs:
acceleration	y = at(x), y = t(x) + a, y = t(x + a) and y = t(ax)
Understand mass and weight	
End of term assessment	