Year Grou	p: 12	Subject: Chemistry	Term: Summer 2022			
Торіс		Key Learnin	g points	Assessment		
Further equilibrium	 End Point: To understand the use of equilibrium constants, be able to calculate them and understand the factors affecting equilibrium constants. Deduce an expression for Kc for homogeneous and heterogeneous reactions Use expressions for Kc to calculate its value and deduce the appropriate units Deduce an expression for Kp for homogeneous and heterogeneous reactions Use expressions for Kp to calculate its value and deduce the appropriate units Describe and explain the effects of temperature on the position of equilibrium and therefore on the equilibrium constant for both exothermic and endothermic reactions Explain why changes in concentration, pressure or addition of catalysts do not affect the equilibrium constant for a reaction 			 Students will be formatively assessed during each topic by past paper questions completed in lesson time. Students will complete homework assignments as 		
Further kinetics	both continue Unde obtai Be al rate e homo Reca Dedu initial Ident Dedu Use t	bus rate methods and initial rate methods. erstand the term "rate of reaction" and be able to ning rate data, e.g. evolved gas volumes, chang ble to define the following terms; rate equation, of equation, overall order of a reaction, rate constant ogenous catalysis, heterogenous catalysis, autor Il the methods that can be used to investigate reaction	order of reaction with respect to a substance within a nt, rate determining step, half-life, activation energy, catalysis. eaction rates and be able to calculate; rate of reaction r an overall reaction from: concentration-time graphs, its rate equation ts rate equation and balanced symbol equation mperature on a rate constant.	 ongoing assessment of understanding. Teachers will provide students with targeted feedback, based on their test performance. During this term students will complete their UCAS prediction exams, which will cover content from topics 110 from the book 1 textbook 		
Orbitals and Reactions in Organic Chemistry	End Point: Ki mechanistica • Defin • Desc • Unde • Desc • Unde arom • Desc	now how two atomic orbitals can overlap to form <i>Ily, referring to orbitals and areas of electron del</i> e the terms electrophile & nucleophile and categoribe ribe how sigma bonds and pi bonds are formed erstand that bond fission can be homolytic or het ribe the bonding in a C=C double bond and categories	a molecular orbital. Describe reactions nsity. gorise reactions as addition, elimination or substitution from the overlap of atomic orbitals erolytic bonyl C=O, referring to molecular orbitals earbonyl compounds and the electrophilic substitution of with a mechanism	provided for the course.		