Subject: Further Mathematics Subject Leader: Mr S Card		Subject Leader: Mr S Card	Year Group: 12	AUTUMN TERM	
Торіс	Key Learning Points		Key Vocabulary	Assessments	
FP1 – Complex numbers	 Solve cubic or quartic elinformation to deduce or quadratic factor for Add, subtract, multiply y real; understand and Understand and use th Know that non-real roo conjugate pairs. Use and interpret Arga Convert between the Complex number Multiply and divide cor 	and divide complex numbers in the form x + iy with x and use the terms 'real part' and 'imaginary part' e complex conjugate ots of polynomial equations with real coefficients occur in	Imaginary number Complex number Complex conjugate Argand diagram Real axis Imaginary axis Modulus Argument Modulus argument form Half line	Weekly assignments used to assess understanding of current and previous knowledge Test in the week before Autumn half term holiday	
FP2 – Algebraic series	 polynomial equations of Form a polynomial equations of a polynomial equation of a given polynomial equalities invol Solve inequalities invol Understand and use for use these to sum other Understand and use the 	e method of differences for summation of series. mathematical induction; contexts include sums of series,	Method of differences Proof by induction	covering blocks FP1 and FP2	

Subject Curriculum Overview for Academic Year 2022/2023

FP3 – Rational functions	 Draw graphs of rational functions formed from linear functions, including cases when some of these coefficients are zero Draw graphs of rational functions formed from quadratic functions, including cases when some of these coefficients are zero Identify asymptotes parallel to coordinate axes and oblique asymptotes. Solve inequalities involving rational functions Using quadratic theory (not calculus) to find the possible values of the function and coordinates of the stationary points of the graph for rational functions Convert between Cartesian and polar coordinates Convert between Cartesian and polar equations Sketch polar curves and find points of intersection Sketch graphs of conic curves including intercepts with axes and equations of asymptotes of hyperbolas Know the definitions of sinhx, coshx and tanhx in terms of exponentials Calculate exact values and solve equations involving hyperbolic functions Know and use the identity cosh²x - sinh²x ≡ 1 Derive the logarithmic form of inverse hyperbolic functions and calculate exact values 	Rational function Asymptote Polar graph Polar coordinate Parabola Ellipse Hyperbola Rectangular hyperbola Hyperbolic function	Weekly assignments used to assess understanding of current and previous knowledge
FP4 – Matrices	 Understand the language associated with matrices Add, subtract and multiply conformable matrices Multiply a matrix by a scalar. Understand and use zero and identity matrices. Use matrices to represent linear transformations in 2D; successive transformations; single transformations in 3D (3D transformations confined to reflection in one of x = 0, y = 0, z = 0 or rotation about one of the coordinate axes) Find invariant points and lines of invariance for a linear transformation. Calculate determinants of 2 × matrices and interpret as scale factors 	Matrix Element Zero matrix Identity matrix Conformable Order of matrix Transpose Transformation matrix Invariant points Line of invariance Determinant Singular matrix Inverse matrix	Test in the week before Christmas holiday covering blocks FP3 and FP4

Subject: Further	Mathematics Subject Leader: Mr S Card	Year Group: 12	SPRING TERM
Торіс	Key Learning Points	Key Vocabulary	Assessments
FP5 – Further	Understand and evaluate the mean value of a function	Mean value	
integration	• Derive formulae for and calculate volumes of revolution when an area is rotated	Volume of revolution	
	 about the x-axis Derive formulae for and calculate volumes of revolution when an area is rotated 		Weekly assignments used
	about the x-axis		to assess understanding
	 Calculate more complicated volumes of revolution by adding or subtracting 		of current and previous
	volumes		knowledge
FP6 – Further	• Understand and use the vector and Cartesian forms of an equation of a straight	Scalar product	Test in the week before
vectors	line in 3D	Skew	Autumn half term holiday
	Understand and use the vector and Cartesian forms of the equation of a plane		covering blocks FP5 and
	 Check whether vectors are perpendicular by using the scalar product Find the intersection of two lines 	sing the scalar product	
	 Find the intersection of two lines Calculate the angle at which two intersecting vectors meet 		
	 Calculate the perpendicular distance a point to a line 		
FS1 – Discrete and	• Understand discrete random variables with distributions given in the form of a	Discrete random variable	
continuous random	table or function.	Expectation	
variables	Evaluate probabilities for a discrete random variable	Variance	
	• Evaluate measures of average and spread for a DRV to include mean, variance, standard deviation, mode and median	Discrete uniform distribution	
	 Know the discrete uniform distribution defined on the set 1,2,, n 	Poison distribution	
	 Understand conditions for a Poisson distribution to model a situation 	Poison probability	
	• Know the Poisson formula and calculate Poisson probabilities using the formula	Continuous random variable	Weekly assignments used
	or equivalent calculator function	Vallable	to assess understanding
	 Know mean, variance and standard deviation of a Poisson distribution Use the result that in a Poisson distribution the mean and variance of X are 		of current and previous
	• Ose the result that in a Poisson distribution the mean and variance of X are equal		knowledge
	 Understand the distribution of the sum of independent Poisson distributions 		
	 Evaluate probabilities for a continuous random variable 		
	• Evaluate measures of average and spread for a CRV to include mean, variance, standard deviation, mode and median		

Subject Curriculum Overview for Academic Year 2022/2023

FM1 – Work energy and power	 Solve problems involving work done by a force acting in the direction of motion or directly opposing the motion Use gravitational potential and kinetic energy in conservation of energy problems Know Hooke's Law including using modulus of elasticity Solve problems involving work done by a variable force Solve problems involving elastic potential energy using modulus of elasticity and apply in conservation of energy problems Check equations using dimensional analysis 	Work done Kinetic energy Gravitational potential energy Elastic potential energy Modulus of elasticity Dimensional analysis	Weekly assignments used to assess understanding of current and previous
FM2 – Momentum and collisions	 Solve problems involving conservation of momentum for linear motion and cases where velocities are given as one- or two-dimensional vectors Look at the coefficient of restitution and Newton's Experimental Law Use coefficient of restitution in direct collisions and impacts with a fixed smooth surface Understand impulse and its relation to momentum Find the size of an impulse for constant and variable forces 	Momentum Impulse Conservation of momentum Coefficient of restitution	- knowledge

Subject: Further	Mathematics	Subject Leader: Mr S Card	Year Group: 12	SUMMER TERM
Торіс		Key Learning Points	Key Vocabulary	Assessments
FS2 – Hypothesis testing and contingency tables	 Use a contingency table to contributions Calculate the number of value of the test statistic Perform a test for association 	ation est for association in context and describe the	Hypothesis test Null hypothesis Alternate hypothesis Critical value p-value Critical region Acceptance region Contingency table Degrees of freedom Association	Further statistics test on completion of blocks FS1 and FS2
FM3 – Circular motion	 Motion of a particle moving in a circle with constant speed Understand the definition of angular speed using both radians and revolutions per unit time. Study the relationships between speed, angular speed, radius and acceleration Look at conical pendulum, with one or two strings Study circular motion in a vertical plane Including the conditions to complete vertical circles. Use of conservation of energy in this context 		Angular velocity Revolutions per minute Centripetal force	Further mechanics test on completion of blocks FM1, FM2 and FM3

Subject Curriculum Overview for Academic Year 2022/2023

FP7 – Curve sketching	 Use graphical and algebraic methods to find and sketch reciprocal and modulus functions Use graphical and algebraic methods to solve inequalities involving reciprocal and modulus functions Enlarge and rotate graphs of conic sections Combine transformations of conic sections Sketch graphs of inverse hyperbolic functions and state each domain and range Sketch the graphs of reciprocal hyperbolic functions and state each domain and range Know, prove and use identities involving hyperbolic functions Solve equations involving hyperbolic functions Understand and use the concept of an oblique asymptote, including finding the equation of an oblique asymptote 	Reciprocal function Modulus function Asymptote Oblique asymptote Parabola Ellipse Hyperbola Rectangular hyperbola Hyperbolic function	Weekly assignments used to assess understanding of current and previous knowledge
Preparation, analysis and review of Year 12 exams	 Preparation for Year 12 exams including learning of key knowledge and formulae Completion of practice and past papers Students sit a full set of AS level exam papers Feedback and evaluation 		

How parents can support learning in the subject this academic year

Practice of mathematical skills is an essential part of students developing confidence, building fluency and improving problem-solving skills. Students are expected to complete at least 6 hours of independent work per week:

- 4 hours of tutorial work (one hour after each lesson). Students are expected to self-mark this work and seek help when experiencing difficulties.
- 1 hour of revision work. Students will be set a revision task each week which will help them to remember key knowledge and practice previously taught skills.
- 1 hour of assessed work. Students will be given a weekly assignment focusing on the skills that they have recently been taught in lessons. This will be used to assess their understanding of a topic and may result in follow up work requiring to be completed.

Due to the hierarchical structure of Mathematics, it is vital that students catch up on any work missed through absences. Students should copy up notes and examples from lessons into their notebooks and attempt any tutorial work set. If they need support with the work then please encourage them to speak to their teacher or attend Maths Club where staff will be there to help and support.

Recommended Reading

Why do Buses Come in Threes? - Rob Eastaway/Jeremy Wyndham How to Cut a Cake? - Ian Stewart The Number Mysteries - (Marcus Du Sautoy Thinking in Numbers - Daniel Tammet Closing the Gap: The Quest to Understand Prime Numbers - Vicky Neale 50 Mathematical Ideas You Really Need to Know - Tony Crilly The Hidden Mathematics of Sport - Rob Eastaway/John Haigh Fermat's Last Theorem - Simon Singh The Music of the Primes - Marcus du Sautoy

Points to note

Students are expected to bring a graphical calculator to every maths lesson. The model we currently recommend is the Casio FX CG50S. This calculator can be purchased through the school via parentpay at a significant discount to what is available commercially.